

serojump: Inferring infection timing and antibody kinetics from longitudinal serology

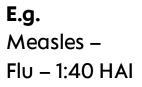
Adam Kucharski (on behalf of David Hodgson) Oct 2025 | ESWI 2025

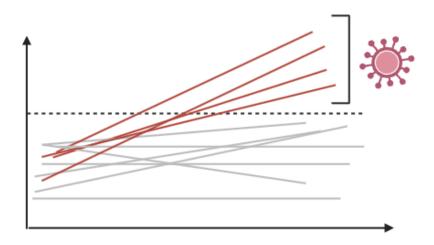
Charité — Universitätsmedizin Berlin

Charité Center for Global Health

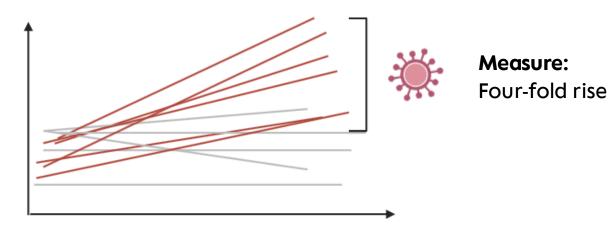
SERO-HEURISTICS

Seropositivity thresholds

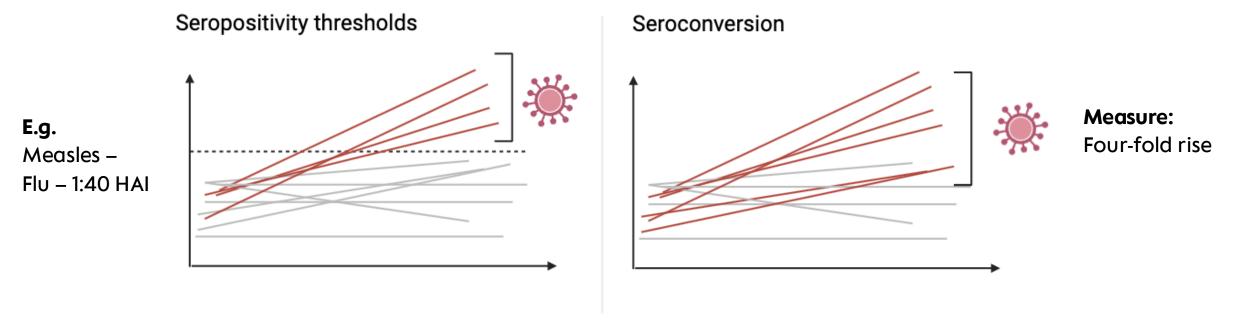




Seroconversion



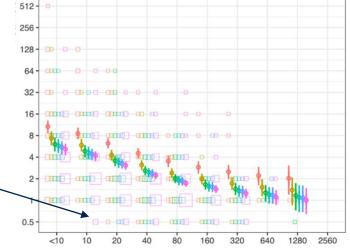
SERO-HEURISTICS



BUT—post-infection antibody kinetics depends on age, exposure history, and pre-exposure titre, so

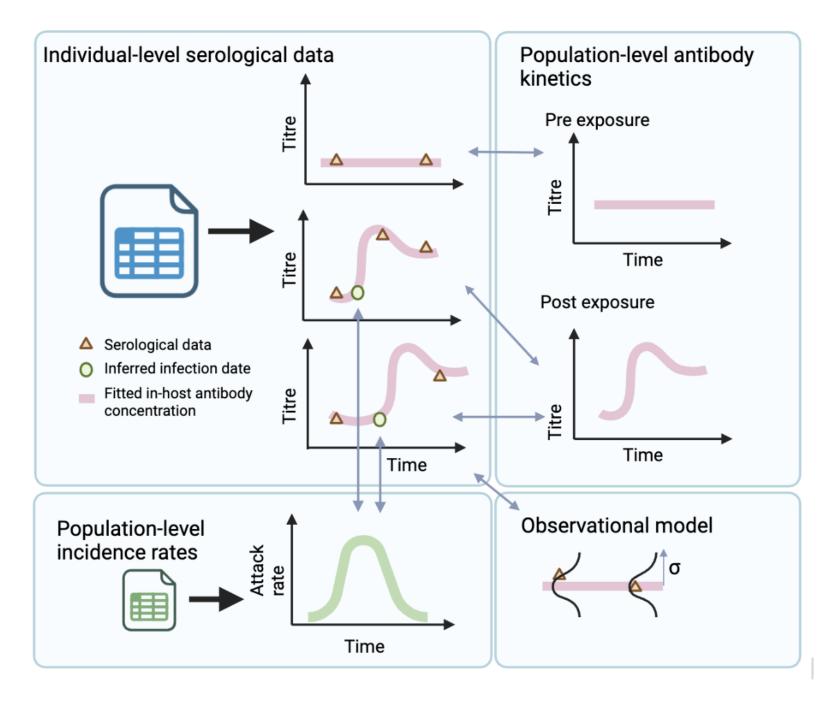
one rule not appropriate

Higher pre-vaccination titre = less boosting Highly vaccinated = less boosting



Hodgson et al. 2024, Vaccine

BAYESIAN OVERVIEW



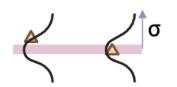
UNDERLYING MODEL

$$\mathcal{L}(Y|Z, au, heta) = \prod_{i=1}^{N} \prod_{b \in B} \prod_{t \in T_i} P_{obs}(Y_{i,t}^b|A_{i,t}^b, heta), ext{ where } A_{i,t}^b = f_a^b(Z_i, au_i,Y_{i,0}^b, heta)$$

We are trying to sample from (Z, τ, θ) through the posterior

$$P(Z, au, heta|Y) = \mathcal{L}(Y|Z, au, heta)P(au|Z)P(Z)P(heta), ext{ where } P(au|Z) = \prod_{\substack{i=1 \ Z_i
eq 0}}^N P_{exp}(au_i)$$

Observational model

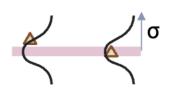


UNDERLYING MODEL

$$\mathcal{L}(Y|Z, au, heta) = \prod_{i=1}^N \prod_{b\in B} \prod_{t\in T_i} P_{obs}(Y_{i,t}^b|A_{i,t}^b, heta), ext{ where } A_{i,t}^b = f_a^b(Z_i, au_i,Y_{i,0}^b, heta)$$

We are trying to sample from (Z, τ, θ) through the posterior

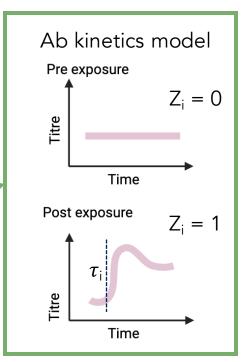
$$P(Z, au, heta|Y) = \mathcal{L}(Y|Z, au, heta)P(au|Z)P(Z)P(heta), ext{ where } P(au|Z) = \prod_{\substack{i=1 \ Z_i
eq 0}}^N P_{exp}(au_i)$$



UNDERLYING MODEL

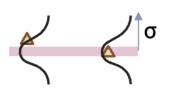
$$\mathcal{L}(Y|Z, au, heta) = \prod_{i=1}^N \prod_{b \in B} \prod_{t \in T_i} P_{obs}(Y_{i,t}^b|A_{i,t}^b, heta),$$

$$\prod_{i=1}^{N}\prod_{j=1}^{N}\prod_{i=1}^{N}P_{obs}(Y_{i,t}^b|A_{i,t}^b, heta), ext{ where } A_{i,t}^b=f_a^b(Z_i, au_i,Y_{i,0}^b, heta)$$



We are trying to sample from (Z, τ, θ) through the posterior

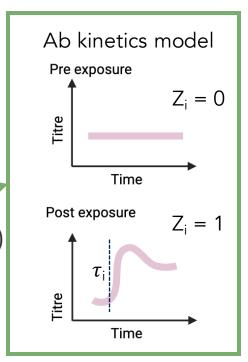
$$P(Z, au, heta|Y) = \mathcal{L}(Y|Z, au, heta)P(au|Z)P(Z)P(heta), ext{ where } P(au|Z) = \prod_{\substack{i=1 \ Z_i
eq 0}}^N P_{exp}(au_i)$$



UNDERLYING MODEL

$$\mathcal{L}(Y|Z, au, heta) = \prod_{i=1}^N \prod_{b \in B} \prod_{t \in T_i} P_{obs}(Y_{i,t}^b|A_{i,t}^b, heta),$$

$$\prod\prod\prod P_{obs}(Y_{i,t}^b|A_{i,t}^b, heta), ext{ where } A_{i,t}^b=f_a^b(Z_i, au_i,Y_{i,0}^b, heta)$$

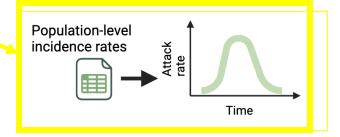


We are trying to sample from (Z, τ, θ) through the posterior

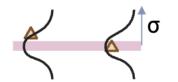
$$P(Z, au, heta|Y) = \mathcal{L}(Y|Z, au, heta)P(au|Z)P(Z)P(heta), ext{ where } P(au|Z) = \prod_{\substack{i=1 \ Z_i
eq 0}}^N P_{exp}(au_i)$$

Correction factor for implicit priors from Binomial dist

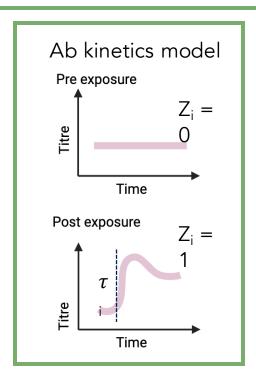
(2)



Observational model



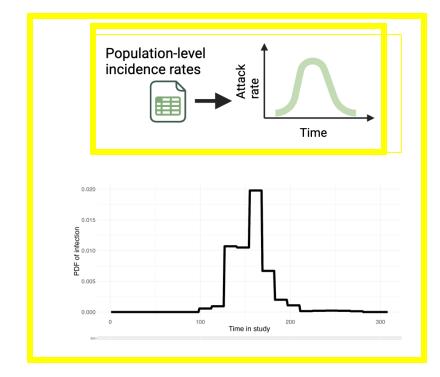
Normal distribution, $Y_{i,t}^b \sim N(A_{i,t}^b, \sigma)$, $\sigma \sim \text{Exponential}(1)$

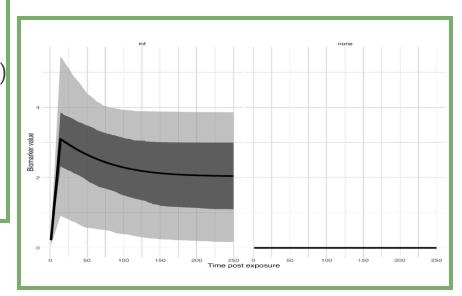


$$f_{e_{pre}}(t, Y_{i,0}) = Y_{i,0} - tw,$$

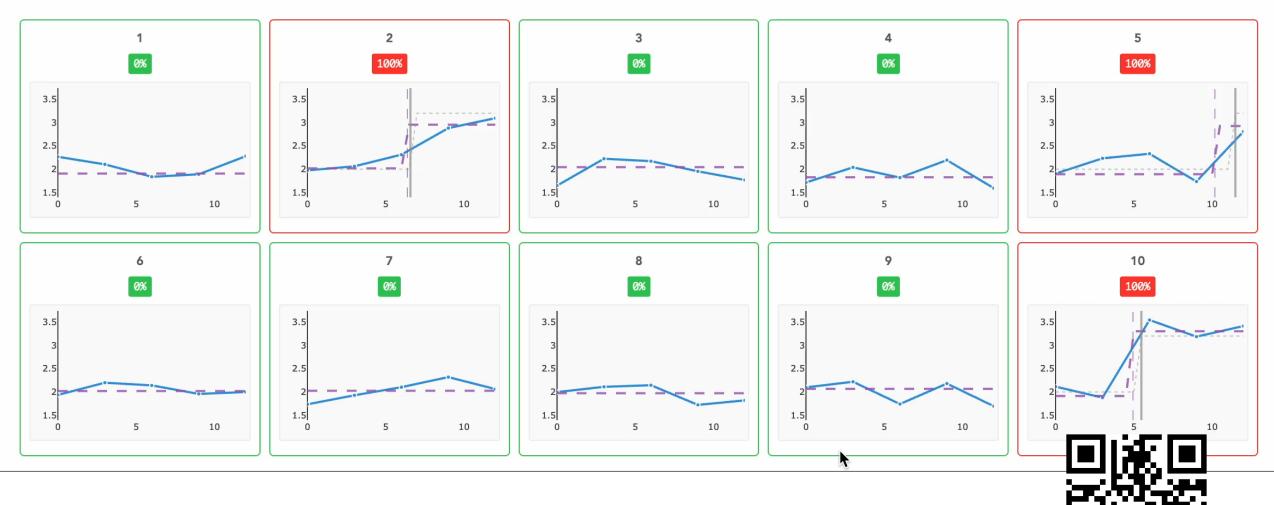
$$w \sim U(0, 1)$$

$$f^b_{sri}(t| heta) = egin{cases} \log(\exp(a) + \exp(c))t/14 \ \log(\exp(a)\exp(-(b/14)(t-14)) + \exp(c)) \end{cases}$$
 $a \sim N(2,2), b \sim N(0.3,0.05), c \sim N(0,4)$





SEROJUMP WIDGET



Link: https://tinyurl.com/bde2kw9j

APPLICATION TO DATASETS

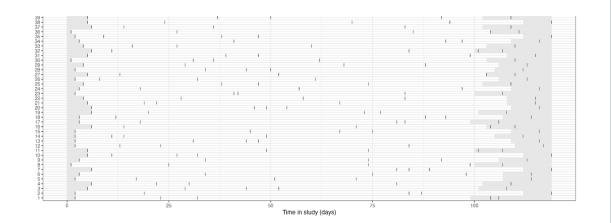
Simulated data

N = 200 people

Over 120 days

5 bleeds person

1 biomarker



Empirical data, TRANSVIR

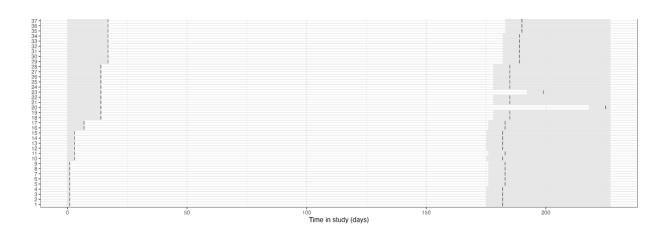
Gambia cohort to SARS-COV-2

N = 256 people

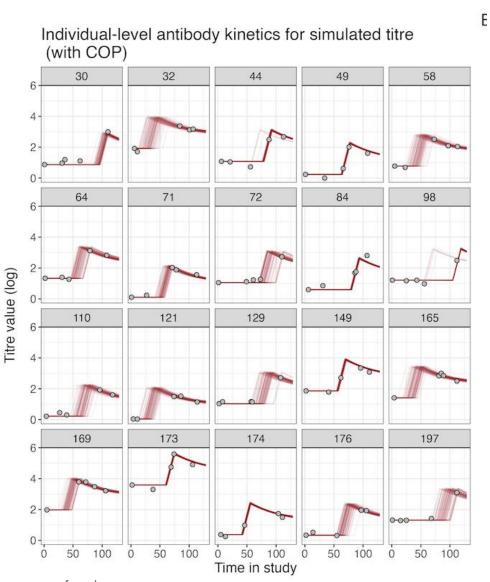
Over 308 days

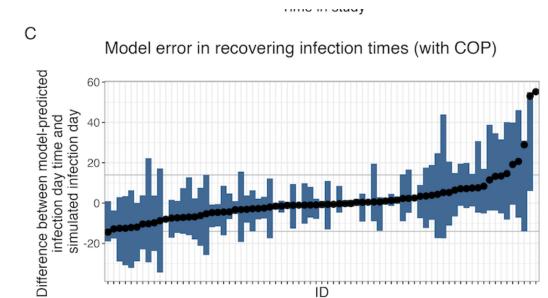
2 bleeds person

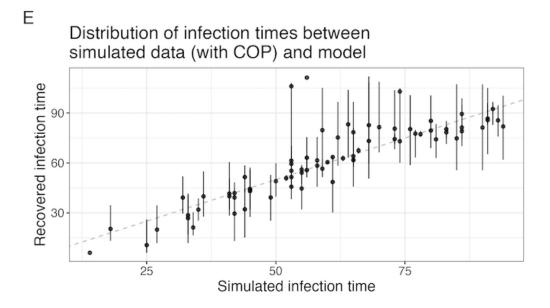
2 biomarkers: spike and NCP



SIMULATED DATA RESULTS:



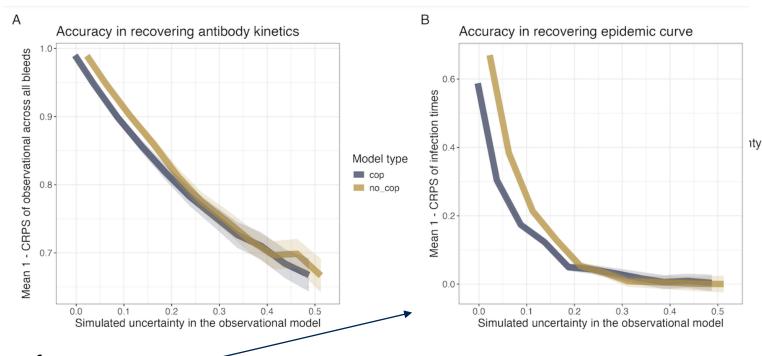




rinio irrotady

Α

SIMULATED DATA RESULTS: STABILITY UNDER UNCERTAINTY



Ε Accuracy in recovering infection status 0.9 F1-Score Model type cop no cop 0.7 0.1 0.2 0.3 0.4 Simulated uncertainty in the observational model

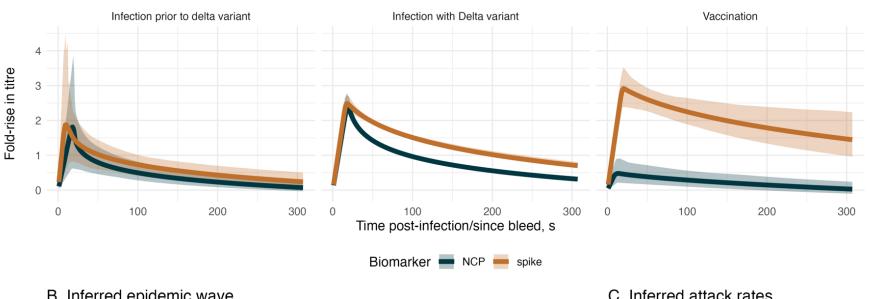
Uniform prior on infection time so recovery poor

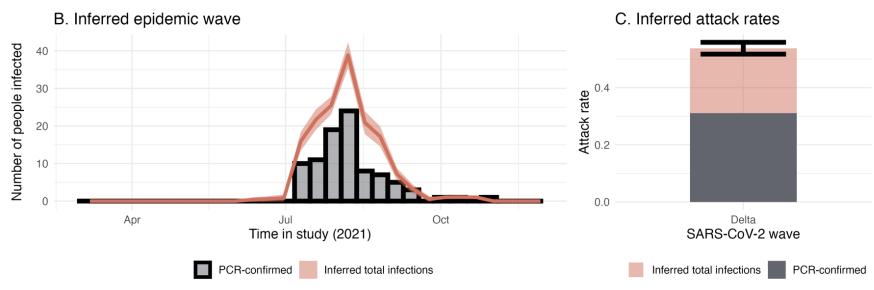
Also found that this had better sensitivity than seropositive and seroconversion metrics!

If uncertainty bigger than boost, can't recover infections well

EMPIRICAL DATA RESULTS: DELTA WAVE

A. Fitted antibody kinetic trajectories

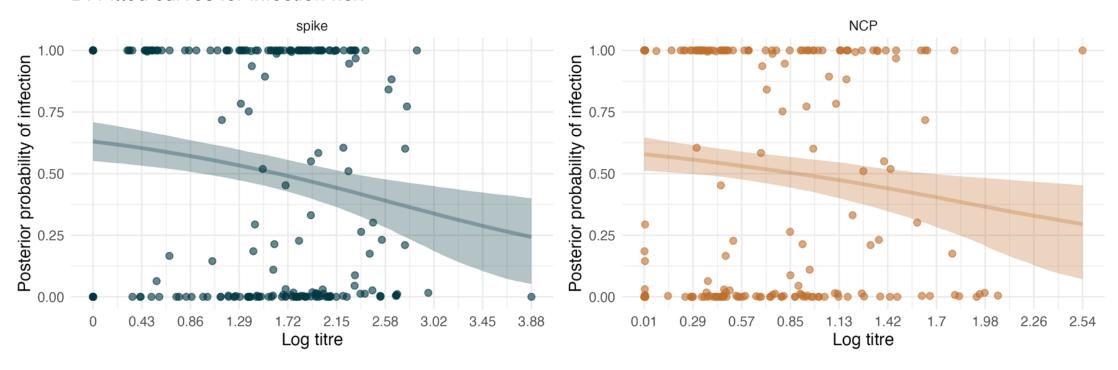




EMPIRICAL DATA RESULTS: DELTA WAVE

Infection risk by titre

D. Fitted curves for infection risk



Biomarker

SUMMARY

serojump: pathogen and biomarker agnostic way of detecting infections and kinetics for an outbreak

- Hope it will improve *seroheuristic* approaches and give a more probabilistic and holistic approach to serological inference
- Better inference on immunological kinetics
- Understand nuances in immunology
- Better estimates for COP and establish thresholds specific to individuals
- Packaged up and encouraging people to use

R PACKAGE: https://seroanalytics.org/serojump/ PAPER: https://doi.org/10.1371/journal.pcbi.1013467

ACKNOWLEDGEMENTS

MRC Unit The Gambia

Dr. James Hay

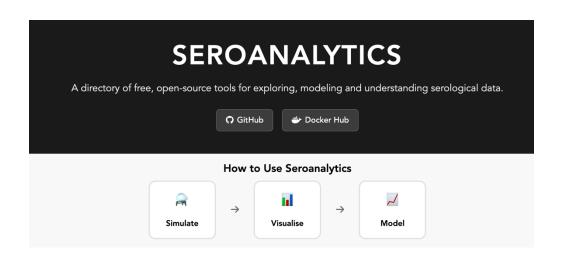
Dr. Sheikh Jarju

Dr.Dawda Jobe

Dr. Rhys Wenlock

Dr. Thushan I de Silva

Prof Adam J Kucharski



FOLLOW FOR MORE INFO!

david.hodgson@charite.de

LinkedIn: https://www.linkedin.com/in/dchodgson/

Bluesky: dchodge.bsky.social

